6/17~20にかけて、各紙・メディアが一斉に、
「餃子の王将が電気を使わない自動ドアの導入を決めた」
という内容を報道しました。

産経新聞 「王将フードサービス、電気使わない自動ドア設置へ
日経新聞 「自動ドア、電気使わず開閉 餃子の王将が導入
読売新聞 「餃子の王将に足で動かす自動ドア…電気代も節約

報道によると、餃子の王将の今回の導入背景は、

関西電力が15%の節電要請を行うなど、近畿でも電力不足が深刻化していることから、節電の秘策とする考えだ。手始めに7月に開店する吹田春日店(大阪府吹田市)と金沢東店(金沢市)に設置し、順次拡大する。

ということのようです。

この報道で、僕が一番気になったのは、
「電気を使わない自動ドアとは一体なんなのか?」
「どこのメーカーが開発したのか?」という点です。

そこで、開発メーカーについて調べてみました。

今回報じられている、電気不要の自動ドアを開発したのは、
会津若松市にある株式会社有紀という建材メーカーです。

資本金は4000万円とメーカーとしては小規模で、
従業員はパートの方も含めて全部で8名。
現在も社長である橋本保さんが、2001年に創業しました。

株式会社有紀は、自動ドア専業メーカーではありません。
事業の柱は、地元の資源である「会津桐」「会津吉祥杉」を活用した
建材の設計・製造・販売。
「電気を使わない自動ドア」は有紀社にとっての新商品です。
商品名は「オートドア・ゼロ」と言います。
日本で特許を取得した後、今年の2月にはアメリカの特許も獲得。

また、餃子の王将は、「オートドア・ゼロ」の最初の導入企業ではありません。
すでに、会津若松市立北会津中学校(保健室)、
常磐自動車道 湯ノ岳PA、名神高速道路 大津SAに導入されています。
しかし、今回は、日本有数の飲食店への導入が決定したということで、
大々的に報道されたようです。

「オートドア・ゼロ」の仕組みは、ホームページでも多くは紹介されていませんが、
ドアの手間に「踏み台」を置き、その踏み台が体重で下に押されることで、
歯車が回り、ドアを開けることができるようです。

電気を使わないため、節電効果が期待できるだけでなく、
電磁場などを発生せず、音も静かというメリットや、
停電時にも稼働するというメリットがあります。

今回の導入の話には、いくつかの素敵な点があります。
・地方の小規模メーカーの技術が注目を集めている
・震災で大きなダメージを受けた福島県の企業の朗報となる
・エネルギー不足が今後懸念される中で、節電にとっての一助となる
・大企業が導入を決めたことで、将来の技術開発にとってのテストケースにできる

餃子の王将において、今後他店にも導入を拡大するかどうかについては、
いくつかの基準があると考えられます。

・子供や大柄な人などの個々の体重差にスムーズに対応できるか
・ゆっくりと入ってくる人、急いで入ってくる人などにスムーズに対応できるか
・出口と入口で一斉に踏み台を踏んだ時、混乱しないか
・街の振動などの他の影響によって誤作動を起こさないか
・頻繁な開閉に耐えられる耐久性はあるか
・冷暖房効率などを考えた場合に、スムーズにドアが閉まるか
・故障時のメンテナンスや修理は迅速に対応できるか

これらは、他の商用施設等に導入される際には重要な確認ポイントです。
有紀社にとっては、実導入の結果を踏まえ、商品の向上が見込めます。
また、ここでの実証事例を基に、他の企業でも導入の検討が進むと思われます。

また、将来の大規模受注に備え、有紀社の製造能力の拡大も注目されます。
現在の従業員8名体制では、おそらく大規模受注には対応できません。
有紀社が特許をもっているため、自社工場への大規模設備投資を行うか、
他社へのライセンス供与をするのか等々です。

餃子の王将の試みは、電力不足に対する事業リスクを軽減するという、
サステイナブルビジネス戦略ととらえることができます。
「オートドア・ゼロ」のように、企業の持続可能ビジネス戦略を推進する技術は、
大企業だけでなく、様々な企業が今後支えていくのだと思います。

6月15日、ISO (国際標準化機構)が、
エネルギーマネジメントシステムに関する新たな国際規格“ISO50001″
リリースしました。(※リリース記事はコチラ

ISOはこれまでにも数多くの国際規格を制定してきています。
代表的なものとしては、
  ISO 9000 ”品質マネジメントシステム”
  ISO 14000 “環境マネジメントシステム”
があります。

それぞれの国際規格で定められている内容は、
「企業等が製品やサービスを安定的に供給するための仕組みづくり」
についてです。
ISO9000では、いかにして品質水準を担保していくか、
ISO14000では、いかにして環境汚染を防止するか、
について、その手法が書かれています。

この国際規格は、法律ではありません。
企業が自発的に取り組んでい行くための「指針」として提供されているものです。
そのため、この国際規格に則るか否かは、企業等の組織に委ねられています。
ですが、取引先企業が、国際規格に則るよう要求することもあるため、
企業間の取引の中で、取得が実質的に「義務付けられて」いることもあります。

今回リリースされたISO50001では、
企業や政府がエネルギー効率を高めたり、エネルギーコストを下げたりする手法、
「エネルギーマネジメントシステム」が規定されています。

このISO50001創設の背景には、
エネルギーの持続可能性に関する関心の高まりがあるようです。
ISOは、国際連合工業開発機関 (UNIDO) からの要請を受け、
2008年にISO50001検討のための委員会を発足させていました。

ISOは、このISO50001を通じて、
世界のエネルギー消費量を60%削減できるとしています。

具体的な内容としては、PDCAサイクルの回し方が中心となっています。


※”Win the energy challenge with ISO 50001“より抜粋。

ISO50001は、このマネジメントサイクルの中でも特に、
経営層の役割、導入方法の重要性を強調しています。

一般的にISOについては、
「導入コンサルタント費用が高い」「維持が面倒で忙殺される」等の
批判も多いのも事実です。

ISO50001が幅広く普及するかどうかはまだ未知数ですが、
多くの企業が「エネルギーマネジメント」について取り組みをを開始する
きっかけになっていくといいなと思います。

2011年4月12日で、カリフォルニア州で新たな法案が成立しました。

「2020年までに電力の33%を再生可能エネルギーで供給することを義務付ける」

カリフォルニア州では、2006年に、
2010年までの電力20%再生エネルギー化法案が可決しており、
成立しており、今回、それを20%から33%に大幅に上昇させたことになります。

再生可能エネルギーについて「33%」という高い目標は前例がなく、
野心的な目標と評されています。

この法案に署名をしたジェリー・ブラウン州知事は、背景についてこう語っています。

この法案はカリフォルニア州に重要な利益をもたらす。州内のグリーンテクノロ
ジーへの投資を刺激し、何万もの新たな雇用を創出し、州の大気の質を改善
し、エネルギー自給率を高め、温室効果ガスを削減する
※原文はコチラ

実は、同様の法案は、2008年にも議会を通過していました。
しかし、当時のシュワルツェネッガー州知事は、33%は非現実だとして署名を拒否。
法案を成立させるかわりに、拘束力の弱い「州知事令」として施行しました。

今回の法成立については、昨今のエネルギー事情が大きく影響していると思われます。
北アフリカ・中東アジアにかけての政情不安による原油価格の高騰。
日本での原発事故による原子力発電に対する批判的な意見の増加。
メキシコ湾原油流出事故による原油採掘見通しの後退。
いずれも、再生可能エネルギーの必要性に対する認識を高めることに寄与しました。

この「電力の33%」はどのぐらい野心的なのでしょうか。

下記のグラフは、2004年~2008年までの電力供給源の表です。


※出所:U.S. Energy Information Administration “California Renewable Electricity Profile

2008年の時点で、再生可能エネルギーは、全体の23.5%を占めているのがわかります。
しかし、カリフォルニア州の33%目標は、「再生可能エネルギー」の全体ではなく、
「再生可能エネルギー(水力除く)」の数値についてなのです。
つまり、2008年時点での11.9%を、2020年までに33%にすると言っているのです。
これはすごい躍進です。

このような大胆な目標設定ができるのは、カリフォルニア州ならではの事情もあります。
州内に世界有数のハイテク産業団地、シリコンバレーを抱えているからです。
シリコンバレーには、最先端のグリーンテクノロジーと、
それを支える膨大なマネーが集まっています。
州政府が掲げる目標により、投資家はグリーンテクノロジー開発に対する長期投資を
さらに加速することができるようになります。
そしてそれが、技術開発を促進し、さらに投資を呼び込むという好循環を生むのです。

また、カリフォルニア州は自然条件にも恵まれています。
州の西部には太平洋からの風が吹き、南東部は砂漠地帯で太陽が降り注ぐため、
風力発電や太陽光発電に適した広大な土地を有しているのです。

33%の目標達成のためのシナリオも作成されています。


※出所:カリフォルニア州のサイトコチラの資料

このように複数のシナリオを作成する手法は、「シナリオプランニング」と呼ばれ、
不確実な将来見通しの中で、柔軟に目標を達成する経営手法のひとつです。
 

しかし、この法案には批判も多く集まっているようです。
Financial Times紙の4/19WEB版では、様々な批判が紹介されています。

まず激しく抵抗しているのが、製造業です。
再生可能エネルギーに力を入れてきたカリフォルニア州では、
現在でも他の州に比べて電力価格が50%ほど高い水準なのですが、
カリフォルニア州共和党が、
今回の法律で電力価格がさらに19%上昇すると語っているためです。
※Huffpost Los Angeles, “California Renewable Energy: Brown
To Sign ‘Most Aggressive’ Mandate In The U.S.

国際競争が激化している中でのさらなる電力価格の高騰は、
人員削減や工場閉鎖につながる。
電力消費の大きい鉄鋼業、セメント業、鉱業は警鐘を鳴らしています。

次に反発しているのが、環境保護活動団体です。
今回の法律で拡大が見込まれる太陽光発電に対し、
「砂漠に建設される大規模太陽光発電プラントは動植物固有種に害を与えるため、
太陽光発電は屋根の屋上のみに限定すべき」
と反対しています。

僕はこの法律の野心的な目標設定を応援したいと思っています。
高い目標設定はイノベーションを加速します。
確かに反対派が唱えているように、課題もたくさん存在します。
しかし、いずれにしても電力供給を支えるためには、それらの課題も含めて、
問題をひとつひとつ解決し、前進していかなくてはなりません。

「問題があるから計画中止」というスタンスではなく、
「目標に向けて問題をどう一緒に解決していくか」という協働姿勢が
必要なのではないでしょうか。

3/19に、福島第一原子力発電所の状況が大きく安定化してきました。

1号機: 東北電力からの電源ケーブル敷設が完了。冷却施設の回復見込み。
2号機: 東北電力からの電源ケーブル敷設が完了。冷却施設の回復見込み。
3号機: 東京消防庁の消防車による注水作業で効果があり、施設冷却に成功。
4号機: 3号機と同様の処置を行う予定。
5号機: 仮設の海水ポンプの稼働に成功。使用済み核燃料プールの冷却機能が回復。
6号機: 仮設の海水ポンプの稼働に成功。使用済み核燃料プールの冷却機能が回復。

当初、同様に原子力緊急事態宣言が発令された、福島第二原子力発電所においても、
すでに、1号機~4号機までの全てにおいて、冷温停止状態となり危機を脱しています。

しかしながら、
放射線漏れによる近隣自治体への影響は深刻な状態となっているとともに、
東京電力管内全域でも深刻な電力不足に見舞われています。

東日本大震災(東北関東大震災)前と後の発電量(出力量)をまとめました。
東京電力の公開情報や報道資料をもとに独自作成。
※最大出力量はWikipedia参照。
※震災への影響は3/20時点の内容。
表をクリックすると拡大します。

大震災前に総計6000万kW近くあった発電量が、
大震災後は総計4000万kW弱まで落ち込んでいるのがわかります。

また、実際に供給できる電力は、”供給量 = 発電量 – 配電ロス” となり、
4000万kW全てが供給できるわけではありません。

この大きな需給格差を埋めるために、
東京電力は契約に基づき大口の法人顧客(工場等)への電力抑制を依頼。

そして、震災直後からの電気需要と供給量の予測は以下の通りでした。

3/12(土) 需要 3600万kW 供給 3700万kW
3/13(日) 需要 3700万kW 供給 3700万kW
3/14(月) 需要 4100万kW 供給 3100万kW (電車運行抑制・揚水式水力発電停止)
3/15(火) 需要 3500万kW 供給 3300万kW (計画停電開始)
3/16(水) 需要 3500万kW 供給 3300万kW
3/17(木) 需要 4000万kW 供給 3350万kW (電車本数増加)
3/18(金) 需要 3700万kW 供給 3500万kW
3/19(土) 需要 3100万kW 供給 3450万kW
3/20(日) 需要 3100万kW 供給 3400万kW
東京電力の公開情報をもとに作成。

このように休日は企業活動が休止するため需要が減りますが、
平日は節電したとしても供給量が足りません。
そのため、電車本数の削減や計画停電が実施されている状況です。

さらに、東京電力の発表では、通常、
冬場で5000万kW、
夏場で5500万~6000万kWトの電力供給力が必要だということです。
その結果、東京電力は、政府中枢機関の多い千代田区、港区、中央区の
3区を除く、都内20区においても夏には計画停電が必要となる可能性を
示唆しました。
※元記事はコチラコチラ

東京電力が現在、復帰や再稼働を目指している
東扇島、鹿島、横須賀を含めると発電量は4,863万kWに達し、
供給量は推定4,200万kWまでは回復できそうです。

そのため、今年の夏は大規模な節電が強いられることになりますし、
計画停電は今年の冬にまで続くという見通しもあります。
朝日新聞の記事

もちろん、節電や計画停電の効果は大きいです。



出所:東京電力のHP

上のグラフを見ていただくと、前年の相当日に比べて、
日中および夜間の電力消費量が大きく低下しているのがわかります(3/23時点)。

今回は現状のみの報告となり心苦しいですが、
対策については情報が取れ次第、あらためて説明していきたいと思います。

太陽光発電モジュールの心臓部となる太陽電池セル。

太陽電池セル製造において、古くから世界の頂点に君臨し続けたのは、日本のシャープ。
1963年に太陽電池の生産を開始し、その後2007年まで生産量世界一を誇り続けます。

しかし、2008年、ドイツのQ-Cellsと中国のSuntech Powerに抜かれ3位に陥落。
さらに、2009年、アメリカのFirst Solarに抜かれ4位に転落。

シャープを上回った3社はいずれも新興企業。
Q-CellsとFirst Solarは1999年に創業。Suntech Powerの創業は2001年。
いずれも、創業から10年経たない間に、老舗のシャープを追い越して行きました。

今でも太陽電池セル市場において技術力は世界一だと言われているシャープが、
なぜ新興企業に一気に追い越されていったのでしょうか。

この原因として、よく挙げられるのが、以下の2つです。
1) 日本政府が太陽光発電への補助金を停止したため
2) シリコンの原材料価格が高騰し、生産量拡大が間に合わなかったため

1)だとすると、なぜシャープは海外市場を狙わなかったのか。
2)だとすると、なぜ他の新興3社は生産量を拡大できたのか。
この2つの説では説明できません。

そこで、より包括的な敗因分析を行ってみたいと思います。

■ 国ごとの太陽光発電の推移

日本は「家庭用太陽光発電」の急速な普及のもとに、
太陽光発電の導入量は2003年まで世界一を誇っていました。
それを後押ししたのが、
経済産業省資源エネルギー庁所管の財団法人である「新エネルギー財団」が
実施していた補助金、「住宅用太陽光発電導入促進事業」でした。
しかし、この補助金は、再生可能エネルギーの重要性が認識されていた2005年に、
突然終了してしまいます。原因は、申請数増加による財源不足でした。
その結果、日本の累積導入量の伸び率は鈍化していきました。

一方で、対象的な動きをとったのはヨーロッパ諸国。特にドイツとスペインでした。
ドイツでは2004年、スペインでは2007年に、本格的な補助金制度が法整備されました。
日本の補助金が設備導入時への支給という形態をとったのに対し、
ヨーロッパでは「固定価格買取制度」、英語名Feed-in Tariff方式が一般的。
これは、太陽光発電で発電した電力を、電力会社が割増し固定価格で買い取る制度。
割増した分のコストは、一般電力消費者が分担して負担するため、
国庫からの負担はありません。

この「固定価格買取制度」を背景に、ドイツ、スペインでは急速に導入量が増加。
2009年の単年の導入量では、EU諸国だけで世界の導入量の75%を占めました。
こうして、日本の国としての導入量は世界3位に陥落しました。

シャープは、日本市場においてシェアは今も昔もナンバーワン。
仮に、日本もヨーロッパ諸国と同様に、「固定価格買取制度」を導入し、
ドイツやスペインと同等かそれ以上の導入実績を持てていたとしたら、
シャープは、その日本の伸びを、自社の実績とし、
世界一の座を守り続けることができていたかもしれません。
これが、1) 日本の補助金廃止が敗因という説につながっていきます。

しかし、すでに触れたように、なぜシャープは世界でシェアを伸ばせなかった
のかを説明してはくれません。

■ シャープと新興3社の業績推移

次に、シャープの売上推移を見てみましょう。
下の図は、シャープのIR資料をもとに作成したものです。

確かに日本で補助金が廃止となった2005年以降、業績が低迷しています。
しかし、よくよくグラフをみてみると、シャープの太陽電池の売上の半分以上は、
海外での売上です。
シャープの売上は、国内の市場動向よりも、
海外での売上動向に大きく左右されることがわかると思います。

一方で、新興3社の推移を見てみましょう。

このグラフは、日本政策投資銀行のレポートから抜粋しました。

シャープが売上を低迷させた2005年以降、新興3社は売上を拡大しています。
これは、同時期に拡大したヨーロッパ市場を見事に3社が取り込んでいったためです。
Q-Cellsは、本国ドイツでの生産を拡大し、マレーシアにも生産工場を設立。
Suntech Powerは、本国中国のほか、ドイツ、日本、アメリカでの生産に着手。
First Solarは、本国アメリカのほか、ドイツ、マレーシア、フランス、ベトナムに
工場を開設し、現在は中国での生産も視野に入れています。

こうして、新興3社は、ヨーロッパ内での生産を大幅に拡大し、
急上昇したヨーロッパの太陽光市場を制していきました。

■ シャープの敗因

では、なぜシャープは、ヨーロッパ市場で存在感を出せなかったのでしょうか。
原因は、コストと資金力でした。

コスト

シャープは、新興3社に比べ、製造原価が高く、価格競争力がありませんでした。

理由のひとつめは、「過度な技術信仰」です。
シャープは世界市場でのシェアを現在落としてしまいましたが、
それでもシャープの太陽電池は、エネルギー効率の面で「世界一」の技術と評されています。
シャープは古くから、太陽電池の普及に欠かせない「エネルギー効率」の向上
に力を入れ、シリコン型という太陽電池の方式にこだわってきました。
シリコン型は、数ある他の方式の中でも、最も高いエネルギー効率を誇ったからです。

しかし、シリコン型には欠点もあります。
原材料のシリコンが高価なため、高コストだということです。
太陽光の力を電力に変える力は高いけれども、
その電力を発電させるためのコストが高い。
さらに、世界的な太陽電池産業の盛り上がりのなかで、シリコン価格は高騰。
シャープの製造原価はさらに上がっていってしまいました。

一方で、新興3社は、原価の削減に成功していきました。


出所:仏Yole Developpement

このグラフを見ていただくと、アメリカやドイツでは、CIGS型、CdTe型の比率が
比較的多いことがわかります。
このCIGS型、CdTe型は、薄膜型方式と呼ばれる新しい技術で、
エネルギー効率の面ではシリコン型に敵いませんが、
原材料が安く、製造原価を大きくおさえることができます。
First Solarは、このような薄膜型で市場に勝負をかけていきました。

一方、Suntech Powerは、シャープと同様、シリコン型を主力商品としましたが、
中国という地の利を生かし、人件費等を大幅に抑え、コスト圧縮に成功していました。
そして、Q-Cellsも、シリコン型を主力としましたが、
世界一市場となったドイツの政府からの後押しや、マレーシアでの生産によるコスト
削減努力などから、シェアを伸ばしていきました。

そして、急成長したヨーロッパ市場。
EU諸国は、再生可能エネルギーに力を入れる一方で、財政難にも苦しんでいました。
政府にとって重要なのは、製品の技術レベルではなく、導入しやすい価格の安さ。
シャープの高単価高品質製品より、新興3社の商品のほうが魅力的だったのです。

この価格競争にさらに追い打ちをかけたのが、「規模の経済」です。
太陽電池は、大量生産型の商品です。
大量に生産すればするほど、規模の経済が働き、製品単価を下げていくことができます。
ヨーロッパで大量の受注を獲得した新興3社は、さらに製品単価を下げることに成功し、
新たな受注を獲得していったのです。

資金力

コスト競争力には、それぞれの企業の資金力が大きく左右しました。
なぜなら、生産量を拡大させればさせるほど、規模の経済が働き、
さらには、高騰する原材料の長期安定供給契約を可能とし、
製造原価を抑制させることができるからです。

Q-Cellsは2005年にフランクフルト証券取引所に上場して資金を集め、
First Solarも2006年にNASDAQに上場し、シリコンバレーの
ベンチャー・キャピタルから多額の資金を集めます。
一方、Suntech Powerは、中国政府の各機関から多額の低金利融資を獲得。
こうして、3社は短期間で大きな資金力を手にすることに成功しました。

一方で、シャープは、新興3社と異なり、太陽電池専業ではありません。
大きな投資計画を行うためには、他の事業とも含めた中での経営判断が
必要となり、意思決定は遅れ、投下資金は3社に比べ見劣りするレベルでした。
資金力でも新興3社に敗れてしまったのです。

こうして、老舗メーカー・シャープは、
急成長したヨーロッパ市場において、新興3社にコスト競争で敗れ、首位から転落。
後塵を拝していきました。

■ 今後の行方

もちろん、シャープも形成を逆転させるため、新たな施策を始めています。
それが「薄膜型の増強」と「生産量の拡大」です。
2007年1月に富山県でのシリコン内製化を開始。
同年3月には奈良県の葛城工場でシリコン型の生産増強と薄膜型の生産に着手。
2010年3月には、大阪府堺市での新工場をオープンし、
2011年にはイタリアのEnel社やスイスのSTMicroelectronics社と共同で
イタリアに初の海外工場もオープンさせる予定です。

しかし、状況は依然としてシャープにとって厳しいままです。
2010年に入り、世界の導入量の1、2位となっていたドイツやスペイン、
さらにその他のEU諸国で、財政難を理由に「固定価格買取制度」の買取価格見直し
議論がスタート。価格が下がることで、導入量が一気に冷え込んできました。
シャープが、イタリアの新工場建設で見込んでいたヨーロッパへの販売に暗雲が
立ち込めています。

さらに、ヨーロッパ市場が急速に悪化する中で、世界中での生産過多が発生し、
太陽電池価格が下落。各社の利益を圧迫しはじめています。
そうした中で、新興3社も、将来性が大きい中国での生産拡大に乗り出しています。
中国では、2009年から政府の”Gold Sun”プログラムが始まり、
太陽光発電への政府の予算が多く投下される取組が開始されているためです。
一方で、シャープからはまだ中国への進出についての発表はありません。

そして、昨今の円高。日本国内での生産を重視してきたシャープにとっては、
大きな逆風です。

最先端の太陽電池技術を有するシャープ。
世界シェアを奪還するための課題は、
日本政府の太陽光発電への取組や、シリコンの安定供給契約だけでなく、
むしろ新興3社に負けない資金力の確保と意思決定スピードにありそうです。

再生可能エネルギーという分野は、
環境活動家やエコ推進者からみると、社会セクターとも位置付けられています。
しかし、実際の従事者の立場からは、激しい競争にさらされているビジネスの場です。
いかに、サステイナブルな事業体になっていけるか。
これは業界の分野を問わず、どの事業体にも必要な要素なのだと思います。

ゴミ問題は現在、世界中で深刻になっています。

どれほど深刻なのかというと、
アメリカ50州の中でアラスカに次いで面積が広いのがテキサス州。
テキサス州は日本の国土面積の2倍弱の大きさです。

そして、なんとのそのテキサス州の約2倍もの面積のゴミの島が、
太平洋を浮遊しています。
つまりの日本の国土面積の4倍です。
下の地図の白くなっている部分が、その島の大きさです。

この島の通称は「太平洋ゴミベルト」。
英語圏では、”Great Pacific Garbage Patch” “Pacific Trash Vortex”
と呼ばれています。

海流域周辺の日本、ロシア、カナダ、アメリカから廃棄されたゴミや、
海流域を航行中の船舶から投棄されるゴミが、
海流の影響で1か所に集中し、1950年ぐらいから今の姿に成長してきました。
Wikipediaによると、陸地から出たゴミが8割、船舶由来のものが2割と
言われています。

このゴミの島による影響は、まだはっきりとはしていませんが、
ゴミが海中分解または光分解されることで、
有毒ガスが発生する可能性が指摘されています。

また、海中生物や鳥などが、プラスチックを誤って捕食したり、
体躯にからまってしまうことにより、危害が及んでいることも報告されています。

そして、このような巨大なゴミの島は、
太平洋以外にも、大西洋やインド洋などでも観測されています。

通常、一般人は洋上を船舶で移動することはなく、
その島を直接眼にすることはあまりありませんが、
広大な海をゴミの山が占領していくことは、気持ちのいいことではありません。

こうしたゴミの島の拡大を阻止する動きも始まっています。
島の拡大の原因となるゴミそのものの投棄や廃棄の撲滅を呼び掛ける運動も
起こっていますし、
2009年には、Project Kaiseiというカリフォルニア州のNPOによる
ゴミの島そのものを消滅させる方法の検討も始まり、現在調査が進められています。

そうした中で、大きな注目を集めているのが、
ゴミそのものをエネルギーに変えていくテクノロジーの開発です。
英語では”Waste-to-Energy Technology“と呼ばれています。

この「ゴミをエネルギーに変える技術」については、
以下のように様々な手法が研究されています。

・焼却してガスを発生し、そのガスの動力で発電する技術
・熱分解して、燃料に変換する技術
・プラスチックを脱重合して、合成原油を生成する技術
・微生物を用いてバイオガスへと分解する技術

こうした「ゴミをエネルギーに変える」リサイクルのビジネスは、
ドイツを中心としたヨーロッパが最先端を走っています。
研究は非営利の研究機関だけでなく、多くの企業で取り組まれており、
ESWETという企業連合体も誕生しています。

さらに、環境保全に貢献する企業を資金面から支えているのが、
昨今の原油高に端を発する中東を中心としたオイルマネーです。[参考]
原油から生じるマネーが、その原油からつくられたプラスチックをさらに燃料に変える
テクノロジーの開発に投資され、新たに燃料を創造していく。
壮大な化石燃料のサプライチェーンが誕生しようとしています。

ゴミ問題の解決策は、「ゴミを減らすこと」とこれまで定義されてきました。
しかしながら、そのゴミを資源そのものに変えてしまう試みが、
まさに研究者や起業家の手によって始められようとしています。

「ゴミを減らす」という人間の行動そのものを変えることは非常に困難です。
教育を通じて、その困難に立ち向かっていく重要性と同時に、
ゴミ問題という概念そのものをなくすというイノベーションを
起こそうとする企業を育くんでいくことも重要だと感じています。

風力、太陽光などの再生可能エネルギーへの関心が高まっていますが、
果てして、再生可能エネルギーのみを活用して、
社会に必要なエネルギーを供給することは可能なのでしょうか?

国際エネルギー機関(IEA: International Energy Agency)が発表している
World Energy Outlook (2008)“では、悲観的な結果となっています。

※”World Energy Outlook”の最新版は2010年のものですが、2010年、2009年の
 ものは有料のため、無料で入手できる最新のものは2008年でした。


2030年までに、発展途上国の経済発展に伴い、
世界のエネルギー需要が急増するのに対し、
再生可能エネルギーによるエネルギー供給は、
2030年時点でもわずか2%にすぎません。

上記のものはガソリンなどの動力エネルギーも含んでいますので、
再生可能エネルギーが活用される電力に絞って見てみるとどうでしょうか。


電力エネルギーも2030年までに需要が大きく増加していきます。

やはり、ここでも再生可能エネルギーの割合は、
風力、地熱、太陽光・太陽熱、潮力を足しても、約6%にすぎません。

石油が枯渇するピーク・オイル説が叫ばれたり、
石油・石炭・天然ガスという化石燃料が与える環境への悪影響の観点からも、
再生可能エネルギーの必要性が唱えられていますが、
世界のエネルギーの権威は悲観的な見方をしています。
再生可能エネルギーの可能性はこんなにも小さいのでしょうか。

僕はそうは思っていません。
上記の国際エネルギー機関のデータの統計手法を考慮すると、
予測が悲観的となるのは当然なのです。

国際エネルギー機関のデータは、過去30年ほどのデータをもとに、
人口変動や交通量推移、GDPなど複数の変数をもとに、
計量経済学の手法で、供給源ごとのエネルギー需要を予測をしています。
ポイントは、過去のデータに依存しているということです。
ある程度の技術革新は変数に加えているようですが、
大規模な技術革新は予測データには反映されないのです。

今後、再生可能エネルギーの技術開発に大きく投資がされていく中、
過去の推移の延長線上に未来があると考えることは適切ではありません。

では、再生可能エネルギーにはどれほどの可能性が将来展望されるのでしょうか。

2011年1月27日のScienceDailyというインターネットメディアは、
スタンフォード大学のジャコブソン教授(市民・環境工学)と
カリフォルニア大学デービス校のデルッチ教授が、
学術論文の中でこのように発言したことを報じました。

「20年~40年後には今日の技術を用いれば、
すべてのエネルギーを再生可能エネルギーで供給できる」

彼らの計画によると、
90%の電力を風力、太陽光・太陽熱、水力でまかない、
残りの10%のうち、4%を地熱、同じく4%を水素燃料、残りの2%を潮力で
調達することが可能だということです。

また、飛行機や船舶、車に使われる流体燃料として、
電気または水素燃料で代替が可能で、
さらに、水素燃料をつくるのに必要な電力も、
再生可能エネルギーで作り出すことができるということです。

2030年までには新たなエネルギー需要をすべて再生可能エネルギーで供給し、
2050年には、全エネルギーを再生可能エネルギーに代替可能となるようです。

再生可能エネルギーについて懸念される課題については、
それぞれ以下のように回答しています。

「風力、太陽光は天候に左右され、安定的な電力供給源にはならない」
⇒ 昼に強い太陽光、夜に強い風力を組み合わせて補完させ、
  それでも不足する電力は、水素燃料で充当すればいい。
⇒ スマートグリッドで長距離電力網を構築すれば、どこかの地域で発電できた
  電力を他の地域に回し、全体的として安定供給は可能となる。
⇒ 消費量の多い時間と、少ない時間の差を活用し、少ない時には蓄積し、
  多い時には放出することも可能。

「発電設備に必要なプラチナやレアアースなど希少資源は足りるのか?」
⇒ 資源量は今でも十分にあり、さらにリサイクルをすれば不足はしない。
⇒ 不足した資源を他の資源でも代替することも可能で問題はない。

「風力や太陽光の発電プラントに必要な土地は十分あるのか?」
⇒ 100%の電力供給をまかなうのに必要な土地専有面積は
  わずか世界の土地の0.4%。設備間のスペースに必要な面積を
  いれても、それでも世界の土地の1.0%にすぎない。

彼らは、今後の展開に対し、
「技術は今でも十分にある。あとはやるかやらないかだ。」と締めくくっています。

個人的には、彼らが認識されていない問題がいくつもあるのだと思います。
しかしながら、IEAが2030年にわずか全体の2%しか供給できないと言っていたところに、
2050年には100%供給できるという意見が登場したことは、
新たな可能性を感じさせてくれます。

再生可能エネルギーの将来や可能性を、低く見積もる必要はないと考えています。

火力、水力、原子力。日本でおなじみのフレーズです。
世界では今、再生可能エネルギーの生産量を増やす動きが急ピッチで進んでいます。

世界でのエネルギー消費量を見てみると、
依然として化石燃料に頼っていることがわかります。

Renewables 2010 Global Status Report

円グラフ上では、再生可能エネルギーは19%を占めているように見えますが、
この中には、伝統的バイオマスと呼ばれる焚き木や薪、糞尿による発電や
水力発電なども含まれています。

風力や太陽光発電など狭義の再生可能エネルギーが占める割合は、
棒グラフの上から3つ目での合計たったの3%。

今後、インドや中国でのエネルギー需要が爆発的に高まっていく中、
再生可能エネルギーや原子力発電の需要は急速に高まっています。
実際、化石燃料の価格は昨今の経済不況にかかわらず、
1バレル$80という高水準を記録しています。

そこで昨今相次いでいるのが、太陽光や風力発電の大プラント建設です。
日本の感覚だと、風力発電や太陽光発電というと、
ときどき見かける数台の風車や、屋根の上のソーラーパネルを想像しがちですが、
世界で今推進されているものは、規模が全く異なります。

例えば、太陽光発電は、こんな規模です。

Largest Solar Plant in Europe Set to Open in Italy

これはヨーロッパ最大の太陽光発電プラントでイタリアに2010年に建設されました。

アメリカのファースト・ソーラー社は、今年に入った1/5に、
中国の原子力発電事業大手の中国広東核電集団(China Guangdong Nuclear
Power Corp、CGNPC)と共同で、モンゴルの砂漠に30メガワットの大型太陽光
発電プラントを建設する計画を発表しています。

2010年に入って太陽光発電事業が相次ぐ理由は大きく2つあります。
 1.莫大な政府補助金
 2.ソーラーパネルの価格の下落

まず、莫大な政府補助金については、
アメリカのオバマ政権のグリーン・ニューディール政策が有名です。
現在、アメリカでは太陽光発電を建設した事業者に、
連邦政府や州などから補助金が得られ、
その額はなんと初期投資の半分以上にも達することがあります。

中国などエネルギー需要が増加する新興国でも、資源高の高騰に備え、
積極的に再生可能エネルギーへの投資に力を入れています。
太陽光発電は、従来「不毛地帯」とし厄介者であった砂漠地帯が、
エネルギーを生む土地に変えることができ、
21世紀の新たな錬金術として注目が集まっています。

ソーラーパネルの価格下落は、アメリカのアリゾナ州テンピ市に本社を置く、
ファースト・ソーラー社の貢献が大きいです。

ファースト・ソーラー社は、従来のシリコン結晶を素材としたソーラーパネル
ではなく、薄型フィルムを用いる新しい技術開発に成功しました。
この薄型フィルム(Thin Flim)タイプのものは、発電効率は以前より低いの
ですが、製造コストが格段に安く、原子力や火力にも対抗できる安さで、
世界の注目を集めました。

2010年10月にアメリカとベトナムに合計500万メガワット分の需要に対応できる
ソーラーパネルの大型生産工場の建設を発表しています。
こうして、ソーラーパネルの需要が高まる中、規模の経済も働き、
さらにソーラーパネルの価格は下がり続けているのです。

風力発電のプラントも大規模です。

これは、アメリカのカリフォルニア州にある風力発電プラントです。
このような大規模なプラントがアメリカにはいくつもあります。
広大な土地が資源となり、新たなエネルギー工場となっています。

世界のエネルギー需要が伸びていく中、
新たなエネルギー生産の動きは加速しつつあります。

2 / 212